输出

1
2
3
4
5
6
7
8
9
10
11
12
13
14
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]

return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)

默认输出为
sequence_output:最后一层特征 output[0]
hidden_states: 隐藏层特征 outputs[“hidden_states”]

1